二叉树是由n(n>=0)个结点组成的有序集合,集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树的、互不相交的二叉树组成。
二叉树的五种形态:
树的另一种表示法:孩子兄弟表示法
A、每个结点都有一个指向其第一个孩子的指针
B、每个结点都有一个指向其第一个右兄弟的指针
孩子兄弟表示法的特性:
A、能够表示任意的树形结构
B、每个结点包含一个数据成员和两个指针成员
C、孩子结点指针和兄弟结点指针构成树杈 3、满二叉树
如果二叉树中所有分支结点的度数都为2,并且叶子结点都在统一层次上,则二叉树为满二叉树。
如果一棵具有n个结点的高度为k的二叉树,树的每个结点都与高度为k的满二叉树中编号为1——n的结点一一对应,则二叉树为完全二叉树。
完全二叉树的特性:
A、同样结点数的二叉树,完全二叉树的高度最小
B、完全二叉树的叶子结点仅出现在最下边两层,并且最底层的叶子结点一定出现在左边,倒数第二层的叶子结点一定出现在右边。
C、完全二叉树中度为1的结点只有左孩子。
A、在二叉树的第i层上最多有2^(i-1)个结点(i>=1)。
B、高度为k的二叉树,最多有2^k-1个结点(k>=0)。
C、对任何一棵二叉树,如果其叶结点有n个,度为2的非叶子结点有m个,则
n = m + 1。
D、具有n个结点的完全二叉树的高度为logn + 1
E、对于有n个结点的完全二叉树,按层次对结点进行编号(从上到下,从左到右),对于任意编号为i的结点:
二叉树结点包含四个固定的成员:结点的数据域、指向父结点的指针域、指向左子结点的指针域、指向右子结点的指针域。结点的数据域、指向父结点的指针域从TreeNode模板类继承而来。
二叉树结点的实现: template <typename T> class BTreeNode:public TreeNode<T> { public: BTreeNode<T>* m_left;//左子结点 BTreeNode<T>* m_right;//右子结点 BTreeNode() { m_left = NULL; m_right = NULL; } //工厂方法,创建堆空间的结点 static BTreeNode<T>* NewNode() { BTreeNode<T>* ret = new BTreeNode<T>(); if(ret != NULL) { //堆空间的结点标识为true ret->m_flag = true; } return ret; } }; 2、二叉树的结点查找
A、基于数据元素的查找
定义基于数据元素查找的函数
B、基于结点的查找
定义基于结点查找的函数
根据插入的位置定义二叉树结点的位置枚举类型:
enum BTNodePos { Any, Left, Right };郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。