InnoDB表的索引有哪些特性,索引组织结构是怎样的?

  1、InnoDB聚集索引特点

  我们知道,InnoDB引擎的聚集索引组织表,必然会有一个聚集索引。

  行数据(row data)存储在聚集索引的叶子节点(除了发生overflow的列,参见 ,后面简称 “前置文”),并且其存储的相对顺序取决于聚集索引的顺序。这里说相对顺序而不是物理顺序,是因为叶子节点数据页中,行数据的物理顺序和相对顺序可能并不是一致的,放在后面会讲。

  InnoDB聚集索引的选择先后顺序是这样的:

  如果有显式定义的主键(PRIMARY KEY),则会选择该主键作为聚集索引

  否则,选择第一个所有列都不允许为NULL的唯一索引

  若前两者都没有,则InnoDB会选择内置的DB_ROW_ID作为聚集索引,命名为GEN_CLUST_INDEX

  特别提醒: DB_ROW_ID占用6个字节,每次自增,且是整个实例内全局分配。也就是说,当前实例如果有多个表都采用了内置的DB_ROW_ID作为聚集索引,则在这些表插入新数据时,他们的内置DB_ROW_ID值并不是连续的,而是跳跃的。像下面这样:

  t1表的ROW_ID:1、3、7、10

  t2表的ROW_ID:2、4、5、6、8、9

  2、InnoDB索引结构

  InnoDB默认的索引数据结构采用B+树(空间索引采用R树),索引数据存储在叶子节点。

  InnoDB的基本I/O存储单位是数据页(page),一个page默认是16KB。我们在 前置文 说过,每个page默认会预留1/16空闲空间用于后续数据“变长”更新所需,因此在最理想的顺序插入状态下,其产生的碎片也最少,这时候差不多能填满15/16的page空间。如果是随机写入的话,则page空间利用率大概是1/2 ~ 15/16。

  当 row_format = DYNAMIC|COMPRESSED 时,索引最多长度为 3072字节,当 row_format = REDUNDANT|COMPACT 时,索引最大长度为 767字节。当page size不是默认的16KB时,最大索引长度限制也会跟着发生变化。

  我们接下来分别验证关于InnoDB索引的基本结构特点。

  首先创建如下测试表:

  [root@yejr.me] [innodb]> CREATE TABLE `t1` (

  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

  `c1` int(10) unsigned NOT NULL DEFAULT '0',

  `c2` varchar(100) NOT NULL,

  `c3` varchar(100) NOT NULL,

  PRIMARY KEY (`id`),

  KEY `c1` (`c1`)

  ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

  用下面的方法写入10条测试数据:

  set @uuid1=uuid(); set @uuid2=uuid();

  insert into t1 select 0, round(rand()*1024),

  @uuid1, concat(@uuid1, @uuid2);

  看下 t1 表的整体结构:

  # 用innodb_ruby工具查看

  [root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 space-indexes

  id name root fseg fseg_id used allocated fill_factor

  238 PRIMARY 3 internal 1 1 1 100.00%

  238 PRIMARY 3 leaf 2 0 0 0.00%

  239 c1 4 internal 3 1 1 100.00%

  239 c1 4 leaf 4 0 0 0.0

  # 用innblock工具查看

  [root@yejr.me]# innblock innodb/t1.ibd scan 16

  ...

  ===INDEX_ID:238

  level0 total block is (1)

  block_no: 3,level: 0|*|

  ===INDEX_ID:239

  level0 total block is (1)

  block_no: 4,level: 0|*|

  可以看到

  索引ID索引类型根节点page no索引层高

  238主键索引(聚集索引)31

  239辅助索引41

  3、InnoDB索引特点验证

  3.1 特点1:聚集索引叶子节点存储整行数据

  先扫描第3个page,截取其中第一条物理记录的内容:

  [root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 -p 3 page-dump

  ...

  records:

  {:format=>:compact,

  :offset=>127,

  :header=>

  {:next=>263,

  :type=>:conventional,

  :heap_number=>2,

  :n_owned=>0,

  :min_rec=>false,

  :deleted=>false,

  :nulls=>[],

  :lengths=>{"c2"=>36, "c3"=>72},

  :externs=>[],

  :length=>7},

  :next=>263,

  :type=>:clustered,

  #第一条物理记录,id=1

  :key=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>1}],

  :row=>

  [{:name=>"c1", :type=>"INT UNSIGNED", :value=>777},

  {:name=>"c2",

  :type=>"VARCHAR(400)",

  :value=>"a1c1a7c7-bda5-11e9-8476-0050568bba82"},

  {:name=>"c3",

  :type=>"VARCHAR(400)",

  :value=>

  "a1c1a7c7-bda5-11e9-8476-0050568bba82a1c1aec5-bda5-11e9-8476-0050568bba82"}],

  :sys=>

  [{:name=>"DB_TRX_ID", :type=>"TRX_ID", :value=>10950},

  {:name=>"DB_ROLL_PTR",

  :type=>"ROLL_PTR",

  :value=>

  {:is_insert=>true,

  :rseg_id=>119,

  :undo_log=>{:page=>469, :offset=>272}}}],

  :length=>129,

  :transaction_id=>10950,

  :roll_pointer=>

  {:is_insert=>true, :rseg_id=>119, :undo_log=>{:page=>469, :offset=>272}}}

  很明显,的确是存储了整条数据的内容。

  聚集索引树的键值(key)是主键索引值(i=10),聚集索引节点值(value)是其他非聚集索引列(c1,c2,c3)以及隐含列(DB_TRX_ID、DB_ROLL_PTR)。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。